- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Fall 2024 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University - High School Programming Contests 2024
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Design and Perception of Wearable Multi-Contact Haptic Devices for Social Communication
Abstract: During social interactions, people use auditory, visual, and haptic (touch) cues to convey their thoughts, emotions, and intentions. Current technology allows humans to convey high-quality visual and auditory information but has limited ability to convey haptic expressions remotely. However, as people interact more through digital means rather than in person, it becomes important to have a way to be able to effectively communicate emotions through digital means as well. As online communication becomes more prevalent, systems that convey haptic signals could allow for improved distant socializing and empathetic remote human-human interaction.
Due to hardware constraints and limitations in our knowledge regarding human haptic perception, it is difficult to create haptic devices that completely capture the complexity of human touch. Wearable haptic devices allow users to receive haptic feedback without being tethered to a set location and while performing other tasks, but have stricter hardware constraints regarding size, weight, comfort, and power consumption. In this talk, I will present how I address these challenges through a cyclic process of (1) developing novel designs, models, and control strategies for wearable haptic devices, (2) evaluating human haptic perception using these devices, and (3) using prior results and methods to further advance design methodologies and understanding of human haptic perception.
Bio: Cara M. Nunez started as an Assistant Professor in the Sibley School of Mechanical and Aerospace Engineering at Cornell University in July 2023. Prior to this, she was a Cornell Provost Faculty Fellow and conducted her fellowship at the Harvard John A. Paulson School of Engineering and Applied Sciences as a member of the Biorobotics Laboratory, the Microrobotics Laboratory, and the Move Lab. She received a Ph.D. in Bioengineering and a M.S. in Mechanical Engineering from Stanford University working in the Collaborative Haptics and Robotics in Medicine Lab in 2021 and 2018, respectively. She was a visiting researcher in the Haptic Intelligence Department at the Max Planck Institute for Intelligent Systems in 2019-2020. She received a B.S. in Biomedical Engineering and a B.A. in Spanish as a part of the International Engineering Program from the University of Rhode Island in 2016. She was a recipient of the National Science Foundation Graduate Research Fellowship, the Deutscher Akademischer Austauschdienst Graduate Research Fellowship, the Stanford Centennial Teaching Assistant Award, and the Stanford Community Impact Award and served as the Student Activities Committee Chair for the IEEE Robotics and Automation Society from 2020-2022. Her research interests include robotics, haptics, and human-centered design for medical applications, human-machine interaction, augmented and virtual reality, and STEM education, among others.