- About
- Events
- Calendar
- Graduation Information
- Cornell Tech Colloquium
- Student Colloquium
- BOOM
- CS Colloquium
- Conway-Walker Lecture Series
- Salton Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University High School Programming Contest
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- Research Night
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Field of Computer Science Ph.D. Student Handbook
- Ph.D. Requirements
- Business Card Policy
- Computer Science Graduate Office Hours
- Cornell Tech
- Curricular Practical Training
- Exam Scheduling Guidelines
- Fellowship Opportunities
- Field A Exam Summary Form
- Graduate School Forms
- Ph.D. Student Financial Support
- Special Committee Selection
- The Outside Minor Requirement
- Travel Funding Opportunities
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Groups
- Student Spotlights
- Contact PhD Office
Scientists and engineers rely more than ever on computer modeling and simulation to guide their experimental and design work. The infrastructure that supports this activity depends critically on the development of new numerical algorithms that are reliable, efficient, and scalable. "Large N" is the hallmark of modern, data-intensive scientific computing and it is a common thread that unifies departmental research in numerical linear algebra, optimization, and partial differential equations.
Faculty and Researchers
Austin Benson develops computational frameworks for analyzing large-scale and complex datasets coming from the Web, social networks, biology, and other scientific domains. This involves a combination of network science, matrix and tensor computations, data mining, machine learning, algorithm design, and high-performance computing.
David Bindel works on numerical linear algebra, numerical methods for data science, and simulating microelectromechanical systems and fusion plasmas. His research involves software design, mathematical analysis and physical modeling.
Anil Damle works on the development of fast algorithms in applied and computational mathematics that exploit structure coming from underlying physical or statistical models. This includes work in the areas of computational quantum chemistry, numerical linear algebra, and spectral clustering.
Madeleine Udell studies optimization and machine learning for large scale data analysis and control, with applications in marketing, demographic modeling, medical informatics, and engineering system design. She also develops libraries for modeling and solving optimization problems, including Convex.jl, one of the top ten tools in the Julia language for technical computing.
Applied Mathematics
The scientific computing group is also active in the Applied Mathematics Ph.D. program, which is part of Cornell's Center for Applied Mathematics. Prospective Ph.D. applicants interested in the mathematical aspects of scientific computing may wish to consider that graduate field as well.