- About
- Events
- Calendar
- Graduation Information
- Cornell Learning Machines Seminar
- Student Colloquium
- BOOM
- Spring 2025 Colloquium
- Conway-Walker Lecture Series
- Salton 2024 Lecture Series
- Seminars / Lectures
- Big Red Hacks
- Cornell University / Cornell Tech - High School Programming Workshop and Contest 2025
- Game Design Initiative
- CSMore: The Rising Sophomore Summer Program in Computer Science
- Explore CS Research
- ACSU Research Night
- Cornell Junior Theorists' Workshop 2024
- People
- Courses
- Research
- Undergraduate
- M Eng
- MS
- PhD
- Admissions
- Current Students
- Computer Science Graduate Office Hours
- Advising Guide for Research Students
- Business Card Policy
- Cornell Tech
- Curricular Practical Training
- A & B Exam Scheduling Guidelines
- Fellowship Opportunities
- Field of Computer Science Ph.D. Student Handbook
- Graduate TA Handbook
- Field A Exam Summary Form
- Graduate School Forms
- Instructor / TA Application
- Ph.D. Requirements
- Ph.D. Student Financial Support
- Special Committee Selection
- Travel Funding Opportunities
- Travel Reimbursement Guide
- The Outside Minor Requirement
- Robotics Ph. D. prgram
- Diversity and Inclusion
- Graduation Information
- CS Graduate Minor
- Outreach Opportunities
- Parental Accommodation Policy
- Special Masters
- Student Spotlights
- Contact PhD Office
Optimal Oblivious Reconfigurable Networks (via Zoom)
Abstract: Oblivious routing has a long history in both the theory and practice of networking. In this talk I will initialize the formal study of oblivious routing in the context of reconfigurable networks, a new architecture that has recently come to the fore in datacenter networking. I focus on the tradeoffs between maximizing throughput and minimizing latency. For every constant guaranteed throughput rate, I characterize the minimum latency (up to a constant factor) achievable by an oblivious reconfigurable network design. The tradeoff curve turns out to be surprisingly subtle: it has an unexpected scalloped shape, reflecting the fact that load balancing, which I show is necessary for oblivious network designs, becomes more costly when average path length is not an integer, since equalizing the load balanced path lengths is not achievable.
This talk is based on joint work with Daniel Amir, Robert Kleinberg, Rachit Agarwal, Hakim Weatherspoon, and Vishal Shrivastav. To be published at STOC 2022.
Bio: Tegan Wilson is a 4th year CS PhD student at Cornell University advised by Bobby Kleinberg. She is broadly interested in algorithms, graph theory, and combinatorics. Prior to graduate school, she received a B.A in Computer Science and Mathematics from Carleton College.